25 research outputs found

    Concept and design of the hybrid distributed embedded systems testbed

    Get PDF
    Wireless mesh networks are an emerging and versatile communication technology. The most common application of these networks is to provide access of any number of users to the world wide Internet. They can be set up by Internet service providers or even individuals joined in communities. Due to the wireless medium that is shared by all participants, effects like short-time fading, or the multi-hop property of the network topology many issues are still in the focus of research. Testbeds are a powerful tool to study wireless mesh networks as close as possible to real world application scenarios. In this technical report we describe the design, architecture, and implementation of our work-in-progress wireless testbed at Freie Universität Berlin consisting of 100 mesh routers that span multiple buildings. The testbed is hybrid as it combines wireless mesh network routers with a wireless sensor network

    State-of-the-art of distributed channel assignment

    Get PDF
    Channel assignment for Wireless Mesh Networks (WMNs) attempts to increase the network performance by decreasing the interference of simultaneous transmissions. The reduction of interference is achieved by exploiting the availability of fully or partially non-overlapping channels. Although it is still a young research area, many different approaches have already been developed. These approaches can be distinguished into centralized and distributed. Centralized algorithms rely on a central entity, usually called Channel Assignment Server (CAS), which calculates the channel assignment and sends the result to the mesh routers. In distributed approaches, each mesh router calculates its channel assignment decision based on local information. Distributed approaches can react faster to topology changes due to node failures or mobility and usually introduce less protocol overhead since communication with the CAS is not necessary. As a result, distributed approaches are more suitable once the network is operational and running. Distributed approaches can further be classified into static and dynamic, in regard to the modus of channel switching. In dynamic approaches, channels can be switched on a per-packet basis, whereas in static approaches radios stay on a specific channel for a longer period of time. Static assignments have been more in focus, since the channel switching time for current Institute of Electrical and Electronics Engineers (IEEE) 802.11 hardware is in the order of milliseconds which is two orders higher than the packet transmission time. Recently, surveys of channel assignment algorithms have been presented which cover certain aspects of the research field. The survey in [1] introduces the problem and presents a couple of distributed algorithms and [2] gives a broad introduction to centralized and distributed approaches. The survey herein is focused on distributed approaches for peer- to-peer network architectures. This report describes the problem formulation for channel assignment in WMNs and the fundamental concepts and challenges of this research area. We present different distributed channel assignment algorithms and characterize them according to a set of classification keys. Since channel assignment algorithms may change the connectivity and therefore the network topology, they may have a high impact on routing. Therefore, we present routing metrics that consider channel diversity and adapt better to the multi- radio multi-channel scenario than traditional routing metrics designed for single channel networks. The presented algorithms are discussed and compared focusing on practical evaluations in testbed and network environments. The implementation for real networks is a hard and labor-intensive task because the researcher has to deal with the complexity of the hardware, operating system, and wireless network interface drivers. As a result, frameworks emerged in order to simplify the implementation process. We describe these frameworks and the mechanisms used to help researchers implementing their algorithms and show their limitations and restrictions

    Practical issues of implementing a hybrid multi-NIC wireless mesh-network

    Get PDF
    Testbeds are a powerful tool to study wireless mesh and sensor networks as close as possible to real world application scenarios. In contrast to simulation or analytical approaches these installations face various kinds of environment parameters. Challenges related to the shared physical medium, operating system, and used hardware components do arise. In this technical report about the work-in-progress Distributed Embedded Systems testbed of 100 routers deployed at the Freie Universität Berlin we focis on the software architecture and give and introduction to the network protocol stack of the Linux kernel. Furthermore, we discuss our first experiences with a pilot network setup, the encountered problems and the achieved solutions. This writing continues our first publication and builds upon the discussed overall testbed architecture, our experiment methodology, and aspired research objectives

    Properties and topology of the DES-Testbed

    Get PDF
    The Distributed Embedded Systems Testbed (DES-Testbed) is a hybrid wireless mesh and wireless sensor network that has been deployed at Freie Universität Berlin and was successively extended from November 2007 to December 2010. This technical report gives an overview of the current topology and the properties of the IEEE 802.11 wireless mesh network that is part of the DES-Testbed. The information that was gathered from an experimental study shall enable researchers to optimize their experiment scenarios, to support the evaluation of experiments, and to derive improved models of real world deployments. The differences of testbeds compared with simulation models and how to evaluate and filter the raw data are addressed. The focus of our study is an up-to-date description of the testbed state and to highlight particular issues. We show that the node degree, link ranges, and packet delivery ratios are not normal distributed and that simple means are not sufficient to describe the properties of a real world wireless network. Significant differences of the results from three channels are discussed. As last, the technical report shows that the DES-Testbed is an overall well connected network that is suited for studies of wireless mesh network and wireless mobile ad-hoc network problems.09.03.201

    A survey of flooding, gossip routing, and related schemes for wireless multi- hop networks

    Get PDF
    Flooding is an essential and critical service in computer networks that is used by many routing protocols to send packets from a source to all nodes in the network. As the packets are forwarded once by each receiving node, many copies of the same packet traverse the network which leads to high redundancy and unnecessary usage of the sparse capacity of the transmission medium. Gossip routing is a well-known approach to improve the flooding in wireless multi-hop networks. Each node has a forwarding probability p that is either statically per-configured or determined by information that is available at runtime, e.g, the node degree. When a packet is received, the node selects a random number r. If the number r is below p, the packet is forwarded and otherwise, in the most simple gossip routing protocol, dropped. With this approach the redundancy can be reduced while at the same time the reachability is preserved if the value of the parameter p (and others) is chosen with consideration of the network topology. This technical report gives an overview of the relevant publications in the research domain of gossip routing and gives an insight in the improvements that can be achieved. We discuss the simulation setups and results of gossip routing protocols as well as further improved flooding schemes. The three most important metrics in this application domain are elaborated: reachability, redundancy, and management overhead. The published studies used simulation environments for their research and thus the assumptions, models, and parameters of the simulations are discussed and the feasibility of an application for real world wireless networks are highlighted. Wireless mesh networks based on IEEE 802.11 are the focus of this survey but publications about other network types and technologies are also included. As percolation theory, epidemiological models, and delay tolerant networks are often referred as foundation, inspiration, or application of gossip routing in wireless networks, a brief introduction to each research domain is included and the applicability of the particular models for the gossip routing is discussed

    Security for the Industrial IoT: The Case for Information-Centric Networking

    Full text link
    Industrial production plants traditionally include sensors for monitoring or documenting processes, and actuators for enabling corrective actions in cases of misconfigurations, failures, or dangerous events. With the advent of the IoT, embedded controllers link these `things' to local networks that often are of low power wireless kind, and are interconnected via gateways to some cloud from the global Internet. Inter-networked sensors and actuators in the industrial IoT form a critical subsystem while frequently operating under harsh conditions. It is currently under debate how to approach inter-networking of critical industrial components in a safe and secure manner. In this paper, we analyze the potentials of ICN for providing a secure and robust networking solution for constrained controllers in industrial safety systems. We showcase hazardous gas sensing in widespread industrial environments, such as refineries, and compare with IP-based approaches such as CoAP and MQTT. Our findings indicate that the content-centric security model, as well as enhanced DoS resistance are important arguments for deploying Information Centric Networking in a safety-critical industrial IoT. Evaluation of the crypto efforts on the RIOT operating system for content security reveal its feasibility for common deployment scenarios.Comment: To be published at IEEE WF-IoT 201

    Optimization driven multi-hop network design and experimentation: the approach of the FP7 project OPNEX

    Get PDF
    International audienceThe OPNEX project exemplifies system and optimization theory as the foundations for algorithms that provably maximize capacity of wireless networks. The algorithms termed in abstract network models have been converted to protocols and architectures practically applicable to wireless systems. A validation methodology through experimental protocol evaluation in real network testbeds has been proposed and used. OPNEX uses recent advances in system theoretic network control, including the Back-Pressure principle, max-weight scheduling, utility optimization, congestion control, and the primal-dual method for extracting network algorithms. These approaches exhibited vast potential for achieving high capacity and full exploitation of resources in abstract network models and found their way to reality in high performance architectures developed as a result of the research conducted within OPNEX
    corecore